Adapting Safety Requirements Analysis to Intrusion Detection

Robyn R. Lutz*

Jet Propulsion Laboratory, and
Department of Computer Science
Iowa State University
rlutz@cs.iastate.edu

Several requirements analysis techniques widely used
in safety-critical systems are being adapted to support
the analysis of secure systems. Perhaps the most rel-
evant system safety technique for Intrusion Detection
Systems is hazard analysis. Hazard analysis identifies
and analyzes hazards (states that can lead to an acci-
dent) in terms of their severity of effects and likelihood
of occurrence. As Rushby points ocut, safety engineer-
ing techniques focus on the consequences to be avoided
and explicitly consider the system context [9]. Intru-
sions are one such class of hazards to be avoided, and
can only be understood within the context of the op-
erational system (including both legitimate users and
attackers).

Fault Tree Analysis (FTA) is often used to support
the hazard analysis of safety-critical systems [5, 10].
Software Fault Tree Analysis (SFTA), a refinement of
FTA, offers a way to explore intrusion scenarios in sup-
port of requirements analysis for Intrusion Detection
Systemns [3]. SFTA can assist in deriving requirements
for the software agents that must identify and respond
to intrusions.

From experience with safety-critical systems, we can
identify four open issues in the application of these
analysis techniques to intrusion scenarios:

» Requirements completeness.
Fault tree techniques are limited by our ability to
envision the possible hazards or intrusions and the
paths to those intrusions. This limitation has been
addressed in safety-critical systems by integrat-
ing the backward search in SFTA with a forward
search such as Failure Modes and Effects Analysis
[6, 7, 8]. The advantage of the forward search is
that it systematically considers the effect of each

*The work described in this paper was carried out in part
at the Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA, under a contract with the National Aero-
nautics and Space Administration. Partial funding was provided
under NASA's Code Q Software Program Center Initiative UPN
323-08.

data item and each step in the process being cor-
rupted in specific ways (e.g., a signal arriving too
soon or a process hanging at a particular point).
Forward search can assist in identifying new or
previously unrecognized vulnerabilities in the sys-
tem.

Formal specification of assumptions.

Validation of the assumptions on which the re-
quirements are based is essential in intrusion sce-
narios. Formal specification of the assumptions fa-
cilitates this validation. In particular, incorrect as-
sumptions about the environment, about the con-
straints on the operational use of the system, or
about the user’s good will, skill, or access can jeop-
ardize systems. To meet the goal of assembling
and reusing a library of intrusion scenarios (per-
haps a collection of fault trees) we need a way to
verify that the correctness of the underlying as-
sumptions is preserved (e.g., that a trusted host
still retains that status). Formally specifying val-
nerable assumptions in the requirements supports
such verification [2).

Evolution of requirements.

Intrusion detection is complicated by the dynamic
nature of the distributed systems that must be
monitored. Adding to the difficulty is the large
quantity of data and traffic that must be sifted,
often in real-time, to detect an intrusion. Conse-
quently, we must plan for the requirements on the
intrusion detection software to be rapidly evolving
and supportive of mobilility. Runtime monitor-
ing is central to the detection of intrusion scenar-
ios, since it can profile usage and identify evolv-
ing conditions that may threaten the security of
the system. In addition, runtime monitoring can
be combined with goal-based reasoning about re-
quirements and strategies for reconciling devia-
tions of the runtime behavior from requirements

[].



e Requirements-based architectural reuse.

The need for coordinated responses to attacks en-
courages the identification of architectures that
are closely tied to the security requirements of
a system. The relationships between architec-
tural attributes (e.g., adaptability) and security
properties are of particular interest. Given that
many intrusions share common stages, steps, and
processes, the opportunity for architectural-based
reuse appears to merit further investigation.

The use of Software Fault Tree Analysis can assist in
the identification, analysis, documentation, and reuse
of intrusion scenarios. Requirements for the software
agents that must detect the dangerous states and re-
spond to the intrusions can be derived from the resulit-
ing descriptions of the system’s behavior. The software
is verified against these intrusion scenarios as it is de-
signed and implemented [4]. The delivered system can
then be validated against the security requirements de-
rived from the SFTA, and the operational systerm main-
tained based on the updated requirements derived from
the evolving SFTA.

References

[1] Feather, M. S. and S. Fickas and A. van Lamsweerde

‘ and C. Ponsard, “Reconciling Systems Requirements

and Runtime Behavior,” Proc 9th IEEE Int Work-
shop on Software Specification and Deasign , 1998.

[2] Hansen, K.M. and A. P. Ravn and V. Stavridou,
“From Safety Analysis to Software Requirements,”
IEEE Trons on Software Eng, 24 (7), 1998, pp. 573—
584.

[3] Helmer, Guy, Johnny Wong, Mark Slagell, Vasant
Honavar, Les Miller, and Robyn Lutz, “Software
Fault Tree and Colored Petri Net Based Specification,
Design and Implementation of Agent-Based Intrusion
Detection Systems,” submitted.

[4] Knight, John C. and Luis G. Nakano, “Software Test
Techniques for System Fault-Tree Analysis,” Proc of
16th Int Conf on Computer Safety, Reliability, and
Security , 1997.

{5] Leveson, Nancy, Safeware, Addison-Wesley, 1995.

[6] Lutz, Robyn R. and Robert Woodhouse, “Re-
quirements Analysis Using Forward and Backward
Search,” Annals of Software Eng , 3, 1997, pp. 459-
475.

[7) Maier, Thomas, “FMEA and FTA To Support Safe
Design of Embedded Software in Safety-Critical Sys-
tems,” Proc OSR 12th Annual Workshop on Safety
and Reliability of Software Based Systems, 1995.

[8] McDermid, John A. and M. Nicholson and D. J. Pum-
frey and P. Fenelon, “Experience with the application

9]

(10]

of HAZOP to computer-based systems,” Proc 10th
Annual Conf on Computer Assurance , 1995, pp. 37—
48.

Rushby, John, “Critical System Properties: Survey
and Taxonomy”, Reliability Engineering and System
Safety, 43 (2), 1994.

Sullivan, Kevin and Joanne Bechta Dugan and David
Coppit, “The Galileo Fault Tree Analysis Tool,” Proc
29th Annual IEEE Int Symposium on Fault-Tolerant
Computing, 1999.





